Reading Focus: Literature, Informational
Writing Focus: Narrative, Informative/Explanatory, Opinion

<table>
<thead>
<tr>
<th>Unifying Concept: Life Science</th>
<th>Suggested Duration: 11 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Kit: Ecosystems</td>
<td></td>
</tr>
</tbody>
</table>

Enduring Understandings:

- Ecosystems are areas within which living and nonliving things interact.
- There are relationships among various organisms and their environment.
- Environment includes biotic and abiotic factors.
- Human activities influence the environment and positively and negatively affect the competition for energy and resources in ecosystems.
- A variety of factors can cause species to change.
- Organisms are interdependent.
- Matter cycles through ecosystems.
- Energy flows through ecosystems.

Essential Questions:

- How do introduced organisms interact with their environments, what are the effects of these interactions, and what can be done to prevent harmful interactions?
- How and why do organisms interact with their environment and what are the effects of these interactions? What if the organisms aren’t native to the area?
- How does interdependence influence the balance of an ecosystem?
- How do species adapt to environmental changes?
- Why is diversity important?

Academic Vocabulary:

<table>
<thead>
<tr>
<th>Abiotic</th>
<th>Extinction</th>
<th>Omnivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptations</td>
<td>Food Chain</td>
<td>Organisms</td>
</tr>
<tr>
<td>Biosphere</td>
<td>Food Web</td>
<td>Parasitism</td>
</tr>
<tr>
<td>Biotic</td>
<td>Habitat</td>
<td>Per-capita</td>
</tr>
<tr>
<td>Carnivore</td>
<td>Herbivore</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>Carrying capacity</td>
<td>Introduced species</td>
<td>Population</td>
</tr>
<tr>
<td>Climate</td>
<td>Interdependent</td>
<td>Predator</td>
</tr>
<tr>
<td>Commensalism</td>
<td>Species</td>
<td>Prey</td>
</tr>
<tr>
<td>Competition</td>
<td>Invasive species</td>
<td>Producer</td>
</tr>
<tr>
<td>Consumer</td>
<td>Life processes</td>
<td>Resources</td>
</tr>
<tr>
<td>Consumption</td>
<td>Limiting factors</td>
<td>Resources</td>
</tr>
<tr>
<td>Cooperation</td>
<td>Mutualism</td>
<td>Species</td>
</tr>
<tr>
<td>Decomposer</td>
<td>Natural resources</td>
<td>Symbiotic</td>
</tr>
<tr>
<td>Dependent</td>
<td>Niche</td>
<td>relationship</td>
</tr>
<tr>
<td>Ecosystem</td>
<td>Non-native species</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Ideas for Knowing Science:

| L2: Organisms require a supply of energy and materials for which they often depend on, or compete with, other organisms. |

Core Ideas for Using Science:

| U1: Scientists explain phenomena using evidence obtained from observations and or scientific investigations. Evidence may lead to developing models and or theories to make sense of phenomena. As new evidence is discovered, models and theories can be revised. |
| U3: Applications of science often have both positive and negative ethical, social, economic, and /or political implications. |

Science & Engineering Practices:

- Develop and Use Models

Crosscutting Concepts:

- Patterns
Engage in Argument from Evidence

| Cause & Effect Systems & System Models Stability & Change Energy & Matter |
|---|---|---|---|

Standards

2018 AZ Science Standards

Focus: Ecosystems are areas within which living and nonliving things interact. There are relationships among various organisms and their environment.

Life Science Standards

6.L2U3.11: Use evidence to construct an argument regarding the impact of human activities on the environment and how they positively and negatively affect the competition for energy and resources in ecosystems.

6.L2U3.12: Engage in argument from evidence to support a claim about the factors that cause species to change and how humans can impact those factors.

6.L2U1.13: Develop and use models to demonstrate the interdependence of organisms and their environment including biotic and abiotic factors.

Learning Progressions:

Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of many other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically, as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

Plant species have adaptations to obtain the water, light, minerals and space they need to grow and reproduce in particular locations characterized by climatic, geological and hydrological conditions.

Organisms and populations of organisms are dependent on their environmental interactions both with other living things and with nonliving factors. Growth of organisms and population increases are limited by access to resources. In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem.

Interdependent organisms living together in particular environmental conditions form an ecosystem. In a stable ecosystem there are producers of food (plants), consumers (animals) and decomposers, (bacteria and fungi which feed on waste products and dead organisms). The decomposers produce materials that help plants to grow, so the molecules in the organisms are constantly re-used. At the same time, energy resources pass through the ecosystem. When food is used by
6.L2U1.14: **Construct a model** that shows the cycling of matter and flow of energy in ecosystems.

organisms for **life processes** some energy is **dissipated** as **heat** but is replaced in the ecosystem by **radiation** from the **Sun** being used to produce plant food. In any given ecosystem there is **competition** among species for the energy resources and the materials they need to live. The persistence of an ecosystem depends on the continued availability in the environment of these energy resources and materials.

Social Justice Standards

Identity 1	I know and like who I am and can talk about my family and myself and describe our various group identities. (ID.3-5.1)
Diversity 6	I like knowing people who are like me and different from me, and I treat each person with respect. (DI.3.5-6)
Justice 11	I try and get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)
Action 16	I pay attention to how people (including myself) are treated, and I try to treat others how I like to be treated. (AC.3-5.116)

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbook:</td>
<td></td>
</tr>
<tr>
<td>“Ecosystems” materials unit/kit</td>
<td></td>
</tr>
<tr>
<td>Teacher’s manual for “Ecosystems”</td>
<td></td>
</tr>
<tr>
<td>8 copies of Ecosystems (Science Stories)</td>
<td></td>
</tr>
<tr>
<td>FOSS website: www.fossweb.com</td>
<td></td>
</tr>
<tr>
<td>Foss Science Kit Supplemental Resources</td>
<td></td>
</tr>
<tr>
<td>Instructional and Assessment Guides</td>
<td></td>
</tr>
<tr>
<td>Additional Instructional Resources</td>
<td></td>
</tr>
</tbody>
</table>
Culturally Responsive Practices *(TUSD SPARKS, SPARKS Strategies)*

Anchoring phenomenon: Introduced species are changing environments all around us. They can cause problems for people and affect biodiversity.

Pre/Post Unit Assessment:
http://intranet/science/Kit_Asmts.html

Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes

Formative/Performance Assessment
- Assess quick writes and scientific illustrations in notebooks (e.g. different organisms found in different ecosystems.)
- Draw and label a diagram of an ecosystem with living and nonliving components, using scientific vocabulary.
- Compare and contrast different food webs and food chains.
- Engage in arguments with evidence and reasoning (e.g. to support or refute how ecosystems must maintain balanced resources.)
- Using the Internet and other sources, find and organize information to answer a question about ecosystems (e.g., How do humans impact ecosystems?)
- Lesson 8: Students determine positive and negative impacts of forest fires on an ecosystem. Create a table or T-Chart to list claim and evidence and reasoning.

Additional Resources:
- [What is an Ecosystem?](http://www.tusd1.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies)
- Population Education
- Ecosystem video 1
- Ecosystem video 2
- The Big Ideas of Sustainability
<table>
<thead>
<tr>
<th>Enduring Understandings:</th>
<th>Essential Questions:</th>
<th>Academic Vocabulary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter can be identified based on chemical and physical properties.</td>
<td>• How is matter classified?</td>
<td>Atom, Attraction, Battery, Chemicals, Circuit, Electric current, Energy, Gas, Liquid, Microscope</td>
</tr>
<tr>
<td>Energy can be transferred from one object to another or be converted from one form to another.</td>
<td>• How can energy be transferred from one material to another?</td>
<td>Motion, Particle, Proportional, Random, Solid, Static, Substance, Temperature, Transfer</td>
</tr>
<tr>
<td>Energy transfers affect the physical and chemical properties of matter. Energy can be stored or released.</td>
<td>• How are materials within a system affected by energy flow?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• What are characteristic properties and how do they help identify unknown substances?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• How do we measure physical and chemical properties?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• How do physical and chemical changes affect matter?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• How does the behavior of particles differ in liquids, solids, and gases? Besides state of matter, what other factors influence particle behavior?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Ideas for Knowing Science:</th>
<th>Core Ideas for Using Science:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1: All matter in the Universe is made of very small particles</td>
<td>U1: Scientist explain phenomena using evidence obtained from observations and or scientific investigations. Evidence may lead to developing models and or theories to make sense of phenomena. A new evidence is discovered, models and theories can be revised.</td>
</tr>
<tr>
<td>P4: The total amount of energy in a closed system is always the same but can be transferred from one energy store to another during an event.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science & Engineering Practices:</th>
<th>Crosscutting Concepts:</th>
</tr>
</thead>
</table>

| Standards |
|---|---|
| 2018 AZ Science Standards | |
Focus: Understanding the structure of matter and the changes or transformations that take place gives us the knowledge of how things can be combined or separated to produce energy and create new substances.

Physical Science Standards

6.P1U1.1: **Analyze and interpret data** to show that changes in states of matter are caused by different rates of movement of atoms in solids, liquids, and gases (Kinetic Theory).

6.P1U1.2: **Plan and carry out an investigation** to demonstrate that variations in temperature and/or pressure affect changes in state of matter.

6.P1U1.3: **Develop and use models** to represent that matter is made up of smaller particles called atoms.

6.P4U2.5: **Analyze** how humans use technology to store (potential) and/or use (kinetic) energy.

Learning Progressions

If a **substance** could be divided into smaller and smaller pieces it would be found to be made of very, very small **particles**, smaller than can be seen even with a **microscope**. These particles are not in a substance; they are the substance. All the particles of a particular substance are the same and different from those of other substances. The particles are not static but move in random directions. The **speed** at which they move is experienced as the temperature of the material. The differences between substances in the **solid**, **liquid** or **gas** state can be explained in terms of the speed and range of the movement of particles and the separation and strength of the attraction between neighboring particles. All materials, anywhere in the universe, living and non-living, are made of a very large number of basic ‘building blocks’ called **atoms**, of which there are about 100 different kinds. The properties of different materials can be explained in terms of the behavior of the atoms and groups of atoms of which they are made.

The **chemicals** in the cells of a battery store energy which is released when the battery is connected so that an electric current flows, **transferring energy** to other components in the circuit and on to the environment. **Motion energy** is properly called **kinetic energy**; it is proportional to the mass of the moving object and grows with the square of its speed. A system of objects may also contain **stored (potential) energy**, depending on their relative positions.

Social Justice Standards

Identity 3 – I know that overlapping identities combine to make me who I am and that none of my group identities on their own fully defines me or any other person.

Diversity 6 – I interact with people who are similar to and different from me, and I show respect to all people.

Diversity 9 – I know I am connected to other people and can relate to them even when we are different or when we disagree.

Justice 12 – I can recognize and describe unfairness and injustice in many forms including attitudes, speech, behaviors, practices and laws.

Action 19 – I will speak up or take action when I see unfairness, even if those around me do not, and I will not let others convince me to go along with injustice.

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

Multicultural Books aligned with Unifying Concept:

- **Science of Cooking**
2019-2020 Science Curriculum Map, Grade 6

Focus:
Students develop an understanding of forces and energy and how energy can transfer from one object to another or be converted from one form to another. They also develop an understanding of the nature of matter.

Culturally Responsive Practices
(TUSD SPARKS, SPARKS Strategies)

Anchor Phenomena:
Question: Powers of Ten Video

Pre/Post Unit Assessment:
http://intranet/science/Kit_Asmts.html

Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes

Formative/Performance Assessment - examples:
- Conduct research and construct explanations using words, visuals, and data (e.g. Differences between how particles behave).
- Engage in arguments with evidence and reasoning (e.g. write a paragraph or short paper)

Additional Resources:
- Sciencespot – Chemistry page
 http://www.sciencespot.net/Pages/classchem.html
- Brain Pop www.brainpop.com (subscription required)
- Bill Nye videos: https://www.youtube.com/results?search_query=bill+nye
- Alien Juice Bar pH activity
- Brainpop.com (Subscription required)
- YouTube: Periodic Table/elements Song:
 - https://www.youtube.com/watch?v=Uy0m7jnyv6U
 - https://www.youtube.com/watch?v=DYW50F42ss8
 - https://www.youtube.com/watch?v=VgVQKCcfwnU
 - https://www.youtube.com/watch?v=v1TfPDIA1xE
- Toxmystery (online activity about hazardous chemicals in the home)
- A student’s guide to global climate change
- History of the Periodic Table http://www.pbs.org/program/mystery-matter/

Resource Books:
- The Elements: A visual Exploration of Every Known Atom in the Universe
 Author: Theodore Gray
Core Ideas for Knowing Science:

- **P2:** Objects can affect other objects at a distance.
- **E1:** The composition of the Earth and its atmosphere and the natural and human processes occurring within them shape the Earth’s surface and its climate.
- **E2:** The Earth and our solar system are a very small part of one of many galaxies within the Universe.

Core Ideas for Using Science:

- **U1:** Scientists explain phenomena using evidence obtained from observations and or scientific investigations. Evidence may lead to developing models and or theories to make sense of phenomena. A new evidence is discovered, models and theories can be revised.

Science & Engineering Practices:

- Develop and Use Models
- Plan and Carry Out Investigations
- Analyze and Interpret Data
- Use Mathematics and Computational Thinking
- Construct Explanations and Design Solutions

Crosscutting Concepts:

- Patterns
- Cause & Effect
- Structure & Function
- Systems & System Models
- Stability & Change
Focus: Students develop an understanding of the scale and properties of objects in the solar system and how forces (gravity) and energy cause observable patterns in the Sun-Earth-Moon system.

Earth and Space Science Standards

6.E1U1.6: Investigate and construct an explanation demonstrating that radiation from the Sun provides energy and is absorbed to warm the Earth’s surface and atmosphere.

6.E2U1.7: Use ratios and proportions to analyze and interpret data related to scale, properties, and relationships among objects in our solar system.

6.E2U1.8: Develop and use models to explain how constellations and other night sky patterns appear to move due to Earth’s rotation and revolution.

6.E2U1.9: Develop and use models to construct an explanation of how eclipses, moon phases, and tides occur within the Sun-Earth-Moon system.

6.E2U1.10: Use a model to show how the tilt of Earth’s axis causes variations in the length of the day and gives rise to seasons.

Learning Progressions

The layer of air at the Earth’s surface is transparent to most of the radiation coming from the Sun, which passes through. The radiation that is absorbed at its surface is the Earth’s external source of energy. The radiation from the Sun absorbed by the Earth warms the surface which then emits radiation of longer wavelength (infrared) that does not pass through the atmosphere but is absorbed by it, keeping the Earth warm. This is called the greenhouse effect because it is similar to the way the inside of a greenhouse is heated by the Sun.

The Earth rotates about an axis lying north to south and this motion makes it appear that the Sun, Moon and stars are moving round the Earth. This rotation causes day and night as parts of the Earth’s surface turn to face towards or away from the Sun. It takes a year for the Earth to pass round the Sun. The Earth’s axis is tilted relative to the plane of its orbit around the Sun so that the length of day varies with position on the Earth’s surface and time of the year, giving rise to the seasons. The Earth is one of eight (so far known) planets in our solar system which, along with many other smaller bodies, orbit the Sun, in roughly circular paths, at different distances from the Sun and taking different times to complete an orbit. The distances between these bodies are huge – Neptune is 4.5 billion km from the Sun, 30 times further than Earth. As seen from Earth, planets move in relation to the positions of the stars which appear fixed relative to each other. The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. This model of the solar system can explain tides, eclipses of the sun and the moon, and the motion of the planets in the sky relative to the stars. Earth’s spin axis is fixed in direction over the short term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

Gravity is the universal attraction between all objects, however large or small, although it is only apparent when one of the objects is very large. This gravitational attraction keeps the planets in orbit around the Sun, the Moon
2019-2020 Science Curriculum Map, Grade 6

6.P2U1.4: Develop and use a model to predict how forces act on objects at a distance.

Round the Earth and their moons round other planets. The effect of gravity on an object on the Moon is less than that on Earth because the Moon has less mass than the Earth, so a person on the Moon weighs less than on Earth even though their mass is the same. The pull of the Earth on the Moon keeps it orbiting the Earth while the pull of the Moon on the Earth gives rise to tides.

Social Justice Standards

Identity 3 – I know that overlapping identities combine to make me who I am and that none of my group identities on their own fully defines me or any other person.

Diversity 6 – I interact with people who are similar to and different from me, and I show respect to all people.

Diversity 9 – I know I am connected to other people and can relate to them even when we are different or when we disagree.

Justice 12 – I can recognize and describe unfairness and injustice in many forms including attitudes, speech, behaviors, practices and laws.

Action 18 – I can respectfully tell someone when his or her words or actions are biased or hurtful.

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

Textbook:
Universe at your Fingertips Science module: http://intranet/science/Kit_Asmts.html

Scholastic Leveled Readers

Multicultural Inclusive Strategies

Science Kit Supplemental Resources

Instructional and Assessment Guides

Culturally Responsive Practices ([TUSD SPARKS](https://www.tusd1.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies), SPARKS Strategies)

Anchor Phenomena:

How is it possible that it can be both winter and summer in Africa at the same time?

Pre/Post Unit Assessment: http://intranet/science/Kit_Asmts.html

Additional Instructional Resources

Additional Resources:

- [Scholastic](http://www.scholastic.com)
- [Jack Horkheimer: Star Gazer](http://www.jackhorkheimer.com)
- [Windows to the Universe](http://windows.totheuniverse.org)
- [Cosmos: A spacetime odyssey](http://cosmosmovie.com)
- [Earth’s Tilt: The Reasons for the Seasons](http://www.discoverykids.com/science)
Concept Map - Teacher provides list of astronomy vocabulary words – students generate concept map based on current understandings of connections. (pre and post to show student growth)

Formative/Performance Assessment Examples:
- Lunar Phase Quizzer: Lunar Phases
- PALS (examples of performance assessments) http://pals.sri.com/
- Google doc -Formative assessment examples: https://www.edutopia.org/groups/assessment/250941
- Quick writes (definitions and examples of characteristics of stars or effects of tides) and drawings in notebooks (e.g. draw and label diagrams to illustrate the seasons, phases of the moon, eclipses, tides, the life cycle of stars) using scientific vocabulary.
- Compare and contrast lunar and solar eclipses, solstice and equinox, high tide and low tide, revolve and rotate.
- Construct and explain models of eclipses, phases of the moon, seasons, tides, constellations.
- Construct a Moon Phases Banner.

- Why do astronauts float in space?
- Solar Eclipse
- TUSD Science Center Astronomy module
- Science Module Supplemental Resources: http://curriculum.tusd1.org/Subject-Areas/Science/Science-Grades-6-8-Curriculum
- Science Spot Website – general science page http://www.sciencespot.net/Pages/classgen.html
- NASA
 - Images: http://www.nasaimages.org/
 - Space Games: http://spaceplace.nasa.gov/menu/play/
- Seasons and Ecliptic Simulator: http://astro.unl.edu/classaction/animations/coordsmotion/eclipticsimulator.html
- Daylight hours Explorer: http://astro.unl.edu/classaction/animations/coordsmotion/daylighthoursexplorer.html
- Moon Phases http://stardate.org/nightsky/moon
- Bill Nye videos: https://www.youtube.com/results?search_query=bill+nye
- Brian Pop: www.brainpop.com (subscription required)
- Tide Simulator: http://aspire.cosmic-ray.org/Labs/Tides/tides_simulator.html
- Objects in the sky move in predictable patterns http://glencoe.mheducation.com/sites/0076659674/student_view0/astronomy_interactives.html#
- Cool Cosmos http://coolcosmos.ipac.caltech.edu/
- Gizmo short video: Cosmic Classroom: http://coolcosmos.ipac.caltech.edu/sitemap.html
- Standford SOLAR center http://solar-center.stanford.edu/colors/
- SOHO (Sun) http://sohowww.nascom.nasa.gov/
- Ancient Models of the Sky http://nfo.edu/astro/models.htm
- Big Bang http://www.astronomy.com/asy/default.aspx?c=a&id=8041
- Big Bang Musical http://www.youtube.com/watch?v=DljtdorHOiE
- Chandra telescope http://chandra.harvard.edu/about/
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-2020 Science Curriculum Map, Grade 6</td>
<td>• Current Tucson Skies http://tucsons skies.blogspot.com/</td>
</tr>
<tr>
<td></td>
<td>• Geocentric/Heliocentric http://www.youtube.com/watch?v=UtOEnTiAZIU</td>
</tr>
<tr>
<td></td>
<td>• Imagine the Universe http://imagine.gsfc.nasa.gov/index.html</td>
</tr>
<tr>
<td></td>
<td>• NASA/Hubblesite https://hubblesite.org</td>
</tr>
</tbody>
</table>