Reading Focus: Literature, Informational

Writing Focus: Narrative, Informative/Explanatory, Opinion

Unifying Concept: Life Science

Resource Kit: Ecosystems

Suggested Duration: 11 weeks

<table>
<thead>
<tr>
<th>Enduring Understandings:</th>
<th>Essential Questions:</th>
<th>Academic Vocabulary:</th>
</tr>
</thead>
</table>
| Ecosystems are areas within which living and nonliving things interact. | - What are examples of different ecosystems and their characteristics?
- How can interactions between organisms and resources in an ecosystem be determined?
- How do climate and weather affect ecosystems?
- How do food chains and food webs represent energy flow?
- How do organisms in an ecosystem meet their survival needs?
- How can changes in an environment be determined as helpful or harmful? | Living
Carrying capacity
Characteristics
Consumers
Decomposers
Ecosystem
Energy pyramid
Environment
Food chain
Food web
Habitat
Inherited
Interaction
Mates
Non-living
Organisms
Population
Producers
Relationships
Resources |

Core Ideas for Knowing Science:

<table>
<thead>
<tr>
<th>Core Ideas for Using Science:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3: Genetic information is passed down from one generation of organisms to another.</td>
</tr>
<tr>
<td>L4: The unity and diversity of organisms, living and extinct, is the result of evolution.</td>
</tr>
</tbody>
</table>

Science & Engineering Practices:

<table>
<thead>
<tr>
<th>Crosscutting Concepts:</th>
</tr>
</thead>
</table>
| Construct Explanations and Design Solutions
Obtain, Evaluate and Communicate Information
Engage in Argument from Evidence | Patterns
Cause & Effect
Structure & Function
Stability & Change |

Standards

2018 AZ Science Standards

Focus: Ecosystems are areas within which living and nonliving things interact. There are relationships among various organisms and their environment.

Learning Progressions:
Life Science Standards

5.L3U1.9: Obtain, evaluate, and communicate information about patterns between the offspring of plants, and the offspring of animals (including humans); **construct an explanation** of how genetic information is passed from one generation to the next.

5.L3U1.10: Construct an explanation based on evidence that the changes in an environment can affect the development of the traits in a population of organisms.

5.L4U3.11: Obtain, evaluate, and communicate evidence about how natural and human-caused changes to habitats or climate can impact populations.

5.L4U3.12: Construct and argument based on evidence that inherited characteristics can be affected by behavior and/or environmental conditions.

Many **characteristics of organisms** are **inherited** from their parents. Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. The environment also affects the traits that an organism develops—differences in where they grow or in the food they consume may cause organisms that are related to end up looking or behaving differently. When the environment changes in ways that affect a place’s physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. Offspring acquire a mix of traits from their biological parents. Different organisms vary in how they look and function because they have different inherited information. In each kind of organism there is variation in the traits themselves, and different kinds of organisms may have different versions of the trait. The environment also affects the traits that an organism develops—differences in where they grow or in the food they consume may cause organisms that are related to end up looking or behaving differently.

Changes in an organism’s **habitat** are sometimes beneficial to it and sometimes harmful. For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. Scientists have identified and classified many plants and animals. Populations of organisms live in a variety of habitats and change in those habitats affects the organisms living there. Humans, like all other organisms, obtain living and nonliving resources from their environments.

Sometimes the differences in **characteristics** between individuals of the same **species** provide advantages in surviving, finding mates, and reproducing. Many characteristics of organisms are inherited from their parents. Other characteristics result from individuals’ **interactions with the environment**, which can range from diet to learning. Many characteristics involve both inheritance and environment.

Social Justice Standards

Identity 1	I know and like who I am and can talk about my family and myself and describe our various group identities.
Diversity 6	I like knowing people who are like me and different from me, and I treat each person with respect.
Justice 11	I try and get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same.
Action 16	I pay attention to how people (including myself) are treated, and I try to treat others how I like to be treated.
2019-2020 Science Curriculum Map, Grade 5

Teaching Tolerance Anti-Bias Framework

https://www.tolerance.org/frameworks

Adopted Texts and Materials

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbook:</td>
<td></td>
</tr>
<tr>
<td>“Ecosystems” materials unit/kit</td>
<td></td>
</tr>
<tr>
<td>Teacher’s manual for “Ecosystems”</td>
<td></td>
</tr>
<tr>
<td>8 copies of Ecosystems (Science Stories)</td>
<td></td>
</tr>
<tr>
<td>FOSS website: www.fossweb.com</td>
<td></td>
</tr>
<tr>
<td>Multicultural Books aligned with Unifying Concept:</td>
<td></td>
</tr>
<tr>
<td>The Tree Lady: The True Story of How One Tree-Loving Woman Changed a City Forever (2013) (IL:K-3 RL:4.5)</td>
<td></td>
</tr>
<tr>
<td>Wanda's Roses (1994) (IL: K–3)</td>
<td></td>
</tr>
<tr>
<td>Common Ground: The Water, Earth, and Air We Share (1997) (Grades 3-7)</td>
<td></td>
</tr>
<tr>
<td>Dream Something Big: The Story of the Watts Towers (2011) (K-3)</td>
<td></td>
</tr>
<tr>
<td>Magic Trash: A Story of Tyree Guyton and His Art (2011) (K-3)</td>
<td></td>
</tr>
<tr>
<td>A River Ran Wild https://www.youtube.com/watch?v=nRkrwJSVi1o</td>
<td></td>
</tr>
<tr>
<td>Just Like Me, Climbing a Tree: Exploring Trees Around the World (2015)</td>
<td></td>
</tr>
</tbody>
</table>

Instructional and Assessment Guides

Culturally Responsive Practices ([TUSD SPARKS](http://www.tusd1.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies), [SPARKS Strategies](http://www.tusd1.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies))

Anchor Phenomena:

- Animals
- Animals
- Plants
- Humans & Technology

Pre/Post Unit Assessment:

http://intranet/science/Kit_Asmts.html

Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes

Formative/Performance Assessment - examples:
<table>
<thead>
<tr>
<th>2019-2020 Science Curriculum Map, Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assess quick writes and scientific illustrations in notebooks (e.g. different organisms found in different ecosystems.)</td>
</tr>
<tr>
<td>• Draw and label a diagram of an ecosystem with living and nonliving components, using scientific vocabulary.</td>
</tr>
<tr>
<td>• Compare and contrast different food webs and food chains.</td>
</tr>
<tr>
<td>• Engage in arguments with evidence and reasoning (e.g. to support or refute how ecosystems must maintain balanced resources.)</td>
</tr>
<tr>
<td>• Using the Internet and other sources, find and organize information to answer a question about ecosystems (e.g., How do humans impact ecosystems?)</td>
</tr>
<tr>
<td>• Lesson 8: Students determine positive and negative impacts of forest fires on an ecosystem. Create a table or T-Chart to list claim and evidence and reasoning.</td>
</tr>
</tbody>
</table>
2019-2020 Science Curriculum Map, Grade 5

Reading Focus: Literature, Informational Writing Focus: Narrative, Opinion, Informative/Explanatory

Unifying Concept: Physical Science
Resource Kit: Mixtures and Solutions

<table>
<thead>
<tr>
<th>Suggested Duration: 11 weeks</th>
</tr>
</thead>
</table>

Enduring Understandings:
All matter is made up of smaller and smaller units.
Matter can be combines or separated to produce energy and create new substances.

Essential Questions:
- What are different ways mixtures can be separated?
- How can solutions be separated?
- How can an unknown chemical be identified by its solubility?
- How do the properties of a mystery crystal help identify what substance it is?
- What does it mean for a solution to be saturated?
- How is the concentration of a solution measured and why is that useful?

Academic Vocabulary:
- Change
- Chemical reaction
- Concentration
- Dilute
- Dissolving
- Evaporation
- Matter
- Mixture
- Particles
- Precipitate
- Property
- Reactant
- Saturated solution
- Solid, liquid, & gas
- Solubility
- Solute
- Solution
- Solvent
- Substances
- Volume

Core Ideas for Knowing Science:
P1: All matter in the Universe is made of very small particles

Core Ideas for Using Science:
U1: Scientist explain phenomena using evidence obtained from observations and or scientific investigations. Evidence may lead to developing models and or theories to make sense of phenomena. A new evidence is discovered, models and theories can be revised.

Science & Engineering Practices:
- Plan and Carry Out Investigations
- Analyze and Interpret Data

Crosscutting Concepts:
- Patterns
- Scale, Proportion & Quantity
- Energy & Matter

Standards

Physical Science Standards

Focus: Understanding the structure of matter and the changes or transformations that take place gives us the knowledge of how things can be combined or separated to produce energy and create new substances.

Learning Progressions:

Matter of any type can be subdivided into **particles** that are too small to see, but even then, the matter still exists and can be detected by other means (e.g., by weighing or by its effects on other objects). For example, a model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon. The effects of air on larger particles or objects (e.g., leaves in...
2019-2020 Science Curriculum Map, Grade 5

5.P1U1.1: Analyze and interpret data to explain that matter of any type can be subdivided into particles too small to see and, in a closed system, if properties change or chemical reactions occur, the amount of matter stays the same.

5.P1U1.2: Plan and carry out investigations to demonstrate that some substances combine to form new substances with different properties and others can be mixed without taking on new properties.

wind, dust suspended in air); and the appearance of visible scale water droplets in condensation, fog, and by extension, also in clouds or the contrails of a jet. The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish (e.g., sugar in solution, evaporation in a closed container). Measurements of a variety of properties (e.g., hardness, reflectivity) can be used to identify particular materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation). When two or more different substances are mixed, a new substance with different properties may be formed; such occurrences depend on the substances and the temperature. No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level). Other substances simply mix without changing permanently and can often be separated again. At room temperature, some substances are in the solid state, some in the liquid state, and some in the gas state. The state of many substances can be changed by heating or cooling them. The amount of matter does not change when a solid melts or a liquid evaporates.

Social Justice Standards

Identity 4 – I can feel good about my identity without making someone else feel badly about who they are.
Diversity 8 – I want to know more about other people’s lives and experiences, and I know how to ask questions respectfully and listen carefully and non-judgmentally.
Justice 11 – I try to get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same.
Action 17 – I know it’s important for me to stand up for myself and for others, and I know how to get help if I need ideas on how to do this.

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

Textbook:
- “Mixtures and Solutions” materials unit/kit
- Teacher’s manual for “Mixtures and Solutions”
- 8 copies of Mixtures and Solutions (Science Stories)
- FOSS website: www.fossweb.com

Multicultural Books aligned with Unifying Concept:
-
<table>
<thead>
<tr>
<th>Scholastic Leveled Readers</th>
<th>Multicultural Inclusive Strategies</th>
<th>Science Kit Supplemental Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructional and Assessment Guides

Culturally Responsive Practices *(TUSD SPARKS, SPARKS Strategies)*

Anchor Phenomena:

Question: **Why are there white “islands” in the Dead Sea?**

Question: How/why are scientists able to clean up oil spills in the ocean?

Question: **“When making lemonade (or Kool-Aid), I add sugar to the mixture of lemon juice and water. As I add the sugar, it seems to “disappear.” How much sugar should I add, and what is happening to it?”**

NGSS Phenomena How and why to use phenomena.

Pre/Post Unit Assessment:
http://intranet/science/Kit_Asmts.html

Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes

Formative/Performance Assessment - examples:

- Quick writes (e.g. data tables to record amounts of substance mixed and resulting reactions).
- Conduct research and construct explanations using words, visuals, and data (e.g. helpful versus harmful chemical reactions)
- Engage in arguments with evidence and reasoning (e.g. write a paragraph or short paper supporting or not).

Additional Instructional Resources

Additional Resources:

- [Mixtures & Solutions Teacher Edition](http://www.tusd1.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies)
- Ask An Expert
- CHEM4KIDS
- HowStuffWorks
- Science of Cooking
<table>
<thead>
<tr>
<th>Enduring Understandings:</th>
<th>Essential Questions:</th>
<th>Academic Vocabulary:</th>
</tr>
</thead>
</table>
| Models are used to explain how systems are constructed and how they work. | • How do scientists develop models to explain how systems work?
• How can you construct a model for a specific purpose?
• How can you make a model of something you cannot observe?
• How can you improve your model for a specific purpose?
• What is the design process used by engineers? | Axle
Conceptual model
Elastic pushes and pulls
Electric forces
Energy
Force
Forces
Friction
Gravitational forces
Gravity
Hub
Inertia
Magnetic forces
Mass
Net force
Orbit
Strength
Switch
Traction
Universal attraction
Variable
Weight |

<table>
<thead>
<tr>
<th>Core Ideas for Knowing Science:</th>
<th>Core Ideas for Using Science:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2: Objects can affect other objects at a distance.</td>
<td>U1: Scientists explain phenomena using evidence obtained from observations and or scientific investigations. Evidence may lead to developing models and or theories to make sense of phenomena. A new evidence is discovered, models and theories can be revised.</td>
</tr>
<tr>
<td>P3: Changing the movement of an object requires a net force to be acting on it.</td>
<td>U2: The knowledge produced by science is used in engineering and technologies to solve problems and/or create products.</td>
</tr>
<tr>
<td>P4: The total amount of energy in a closed system is always the same but can be transferred from one energy store to another during an event.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science & Engineering Practices:</th>
<th>Crosscutting Concepts:</th>
</tr>
</thead>
</table>
| Ask Questions and Define Problems
Analyze and Interpret Data
Construct Explanations and Design Solutions
Obtain, Evaluate and Communicate Information | Patterns
Cause & Effect
Systems & Systems Models
Scale, Proportion & Quantity
Energy & Matter |

Standards

2018 AZ Science Standards

Focus: Models are used to explain how systems are constructed and how they work. Engineers use scientific knowledge to design and build useful things.

Learning Progressions:
Gravity is the universal attraction between all objects, however large or small, although it is only apparent when one of the objects is very large. This gravitational attraction keeps the planets in orbit around the Sun, the Moon round the Earth and their moons round other planets. On the Earth it results in everything being pulled down towards the center of the Earth. We call this downward attraction the weight of an object. Objects in contact exert forces on each other (friction, elastic pushes and pulls). Electric, magnetic, and gravitational forces between a pair of objects do not require that the objects be in contact—for example, magnets push pull at a distance.

Each force acts on one particular object and has both a strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative and addition of forces are used at this level). The patterns of an object’s motion in various situations can be observed and measured; when past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) How quickly an object’s motion is changed depends on the force acting and the object’s motion is changed depends on the force acting and the object’s mass. The greater the mass of an object, the longer it takes to speed it up or slow it down, a property of mass described as inertia.

The faster a given object is moving, the more energy it possesses. Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (Boundary: At this grade level, no attempt is made to give a precise or complete definition of energy.) Energy is present whenever there are moving objects sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. For example, energy radiated from the sun is transferred to Earth by light. When this light is absorbed, it warms Earth’s land, air, and water and facilitates plant growth. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light.
The currents may have been produced to begin with by transforming the energy of motion into electrical energy (e.g., moving water driving a spinning turbine which generates electric currents.)

<table>
<thead>
<tr>
<th>Social Justice Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity 4 – I can feel good about my identity without making someone else feel badly about who they are. (ID.3-5.4)</td>
</tr>
<tr>
<td>Diversity 8 – I want to know more about other people’s lives and experiences, and I know how to ask questions respectfully and listen carefully and non-judgmentally. (DI.3.5-8)</td>
</tr>
<tr>
<td>Justice 11 – I try to get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)</td>
</tr>
<tr>
<td>Action 17 – I know it’s important for me to stand up for myself and for others, and I know how to get help if I need ideas on how to do this. (AC.3-5.17)</td>
</tr>
</tbody>
</table>

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

|---|

<table>
<thead>
<tr>
<th>Textbook:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• “Models and Designs” materials unit/kit</td>
</tr>
<tr>
<td>• Teacher’s manual for “Models and Designs”</td>
</tr>
<tr>
<td>• 8 copies of Models and Designs (Science Stories)</td>
</tr>
<tr>
<td>• FOSS website: www.fossweb.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multicultural Books aligned with Unifying Concept:</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
</tr>
</tbody>
</table>

Instructional and Assessment Guides

Culturally Responsive Practices ([TUSD SPARKS, SPARKS Strategies](http://www.tusd.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies))

Anchor Phenomena:
- **How does shape affect a vehicle’s speed and fuel efficiency?**
- **Science Experiment-Toy Car**

NGSS Phenomena How and why to use phenomena.

Pre/Post Unit Assessment:

Additional Instructional Resources

Additional Resources:
- Rube Goldberg videos (search YouTube)
- [Ask An Expert](http://www.tusd.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies)
- [Build-It-Yourself](http://www.tusd.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies)
- [How Stuff Works](http://www.tusd.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies)
Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes.

Formative/Performance Assessment – examples:
- Conduct research and construct explanations using words, visuals, and data (e.g. present a timeline that explores the development of a technology like the automobile and predict what the technology may be like in 50 years)
- Engage in arguments with evidence and reasoning (e.g. Is new or improved technology helpful or harmful?)
- Develop a detailed plan of the design process for the go-carts, along with an analysis of the results and further revisions (Investigation 4, part 3)
- Develop a project to design an invention using simple machines.
- Connect the invention to inventors and what they are known for possible submit to the Science & Engineering Fair.

<table>
<thead>
<tr>
<th>Concept Map</th>
<th>Formative/Performance Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre and post with linking phrases to indicate relationships of concepts and processes.</td>
<td>examples:</td>
</tr>
<tr>
<td>- Conduct research and construct explanations using words, visuals, and data (e.g. present a timeline that explores the development of a technology like the automobile and predict what the technology may be like in 50 years)</td>
<td></td>
</tr>
<tr>
<td>- Engage in arguments with evidence and reasoning (e.g. Is new or improved technology helpful or harmful?)</td>
<td></td>
</tr>
<tr>
<td>- Develop a detailed plan of the design process for the go-carts, along with an analysis of the results and further revisions (Investigation 4, part 3)</td>
<td></td>
</tr>
<tr>
<td>- Develop a project to design an invention using simple machines.</td>
<td></td>
</tr>
<tr>
<td>- Connect the invention to inventors and what they are known for possible submit to the Science & Engineering Fair.</td>
<td></td>
</tr>
</tbody>
</table>
Reading Focus: Literature, Informational
Writing Focus: Narrative, Opinion, Informative/Explanatory

Unifying Concept: Earth & Space Science

<table>
<thead>
<tr>
<th>Enduring Understandings:</th>
<th>Essential Questions:</th>
<th>Academic Vocabulary:</th>
</tr>
</thead>
</table>
| Earth is part of one solar system, within one galaxy, which is a small part of the greater universe. | • How does the motion of the Moon and Earth around the Sun create the phases of the Moon?
• How does gravity affect the celestial objects in our solar system?
• What are the characteristics of the planets and other celestial objects in our solar system?
• How does the motion of a planet create the effect of night and day?
• Why do some celestial objects appear to move in a way that is different from their real motion?
• What efforts have humans made to explore space? | Asteroid
Axis
Comet
Earth
Gravity
Lunar cycle
Meteor
Moon
North
Observable patterns
Orbit
Revolution
Rotation
South
Star
Sun
Universe
Weight |

Core Ideas for Knowing Science:

- E2: The Earth and our solar system are a very small part of one of many galaxies within the Universe.

Core Ideas for Using Science:

- U1: Scientists explain phenomena using evidence obtained from observations and scientific investigations. Evidence may lead to developing models and theories to make sense of phenomena. A new evidence is discovered, models and theories can be revised.

Science & Engineering Practices:

- Construct Explanations and Design Solutions
- Obtain, Evaluate and Communicate Information
- Develop and Use Models

Crosscutting Concepts:

- Patterns
- Cause & Effect
- Systems & System Models
- Scale, Proportion and Quantity

Standards

2018 AZ Science Standards

Focus: Earth is part of one solar system, within one galaxy, which is a small part of the greater universe. Our solar system is made up of various objects that are interrelated; there are forces acting upon the earth.

Earth and Space Science Standards

Learning Progressions:

The Earth moves round the Sun taking about a year for one orbit. The Moon orbits the Earth taking about four weeks to complete an orbit. The Sun, at the center of the solar system, is the only object in the solar system that is a source of visible light.
5.E2U1.7: Develop, revise, and use models based on evidence to construct explanations about the movement of the Earth and Moon within our solar system.

5.E2U1.8: Obtain, analyze, and communicate evidence to support an explanation that the gravitational force of Earth on objects is directed toward the planet’s center.

Gravity is the universal attraction between all objects, however large or small, although it is only apparent when one of the objects is very large. On the Earth it results in everything being pulled down towards the center of the Earth. We call this downward attraction the weight of an object.

The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center.

Social Justice Standards

Identity 4 – I can feel good about my identity without making someone else feel badly about who they are. (ID.3-5.4)
Diversity 8 – I want to know more about other people’s lives and experiences, and I know how to ask questions respectfully and listen carefully and non-judgmentally. (DI.3.5-8)
Justice 11 – I try to get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)
Action 17 – I know it’s important for me to stand up for myself and for others, and I know how to get help if I need ideas on how to do this. (AC.3-5.17)

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

Textbook:
- District “Solar System” materials kit
- Teacher Edition for “Solar System”
- 8 copies of Solar System (Delta)
- FOSS website: www.fossweb.com

Multicultural Books aligned with Unifying Concept:
-
2019-2020 Science Curriculum Map, Grade 5

<table>
<thead>
<tr>
<th>Instructional and Assessment Guides</th>
<th>Additional Instructional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Top Left: Scholastic Leveled Readers</td>
<td>In Top Right: Science Kit Supplemental Resources</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>In Middle Left: Multicultural Inclusive Strategies</td>
<td>In Middle Right: Educational Materials Center Resources, including books, kits, panels, and videos: http://www.tusd1.org/Departments/Educational-Materials-Center/Bibliographies/General-Bibliographies</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>In Bottom Left: Culturally Responsive Practices (TUSD SPARKS, SPARKS Strategies)</td>
<td>In Bottom Right: Additional Resources:</td>
</tr>
<tr>
<td>Anchor Phenomena:</td>
<td>• Scholastic</td>
</tr>
<tr>
<td>How is it possible that it can be both winter and summer in Africa at the same time?</td>
<td>• Jack Horkheimer: Star Gazer</td>
</tr>
<tr>
<td>Pre/Post Unit Assessment:</td>
<td>• Windows to the Universe</td>
</tr>
<tr>
<td>http://intranet/science/Kit_Asms.html</td>
<td>• Cosmos: A spacetime odyssey</td>
</tr>
<tr>
<td>Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes</td>
<td>• Earth’s Tilt The Reasons for the Seasons</td>
</tr>
<tr>
<td>Formative/Performance Assessment - examples:</td>
<td>• Why do astronauts float in space?</td>
</tr>
<tr>
<td>• Quick writes and drawings in science journal.</td>
<td>• Solar Eclipse</td>
</tr>
<tr>
<td>• Draw and label a diagram of the solar system, using scientific vocabulary.</td>
<td></td>
</tr>
<tr>
<td>• Compare and contrast the processes of rotation and revolution.</td>
<td></td>
</tr>
</tbody>
</table>