Reading Focus: Literature, Informational
Writing Focus: Narrative, Informative/Explanatory, Opinion

Unifying Concept: Earth and Space Science
Earth Materials

Suggested Duration: 11 weeks

Enduring Understandings:
- Rocks and minerals have identifiable properties
- Geologists use a variety of means to identify rocks and minerals.

Essential Questions:
- What are some of the properties we can use to describe individual rocks?
- What properties can we use to identify minerals?
- How can we determine the ingredients of a rock?
- How can we tell if one of the ingredients in a rock is the mineral calcite?
- How can we separate the ingredients of a rock?
- What are the mineral ingredients in granite?

Academic Vocabulary:
- Crystal
- Depth
- Rock
- Diameter
- Mineral
- Circumference
- Geology
- Dissolve
- Geologist
- Mass
- Property
- Evaporate
- Hardness

Standards

Strand 6: Earth and Space Science (HLS – 22%)

3.S6.C1 Properties of Earth Materials: Identify the basic properties of Earth materials.

PO1. Identify the layers of the Earth:
- Crust
- Mantle
- Core (inner and outer)

PO2. Describe the different types of rocks and how they are formed.
- Metamorphic
- Igneous
- Sedimentary

PO3. Classify rocks based on the following physical properties:
- Color
- Texture

PO4. Describe fossils as a record of past life forms.

PO5. Describe how fossils are formed.

PO6. Describe ways humans use Earth materials (e.g., fuel, building materials, growing food).

Supporting Standards

Strand 1: Inquiry Process

PO1. Demonstrate safe behavior and appropriate procedures (e.g., use of instruments, materials, organisms) in all science inquiry.

PO2. Plan a simple investigation (e.g., one plant receives adequate water, one receives too much water, and one receives too little water) based on the formulated questions.

PO3. Conduct simple investigations (e.g., related to plant life cycles, changing the pitch of a sound, properties of rocks) in life, physical, and Earth and space sciences.

PO4. Use metric and U.S. customary units to measure objects.

PO5. Record data in an organized and appropriate format (e.g., t-chart, table, list, written log).
PO1. Formulate relevant questions about the properties of objects, organisms, and events of the environment using observations and prior knowledge.
PO2. Predict the results of an investigation based on observed patterns, not random guessing.

3.S1.C3 Analysis and Conclusions: Organize and analyze data; compare to predictions.
PO1. Organize data using the following methods with appropriate labels:
- Bar graphs
- Pictographs
- Tally charts
PO2. Construct reasonable interpretations of the collected data based on formulated questions.
PO3. Compare the results of the investigation to predictions made prior to the investigation.
PO4. Generate questions for possible future investigations based on the conclusions of the investigation.
PO5. Record questions for further inquiry based on the conclusions of the investigation.

PO1. Communicate investigations and explanations using evidence and appropriate terminology.
PO2. Describe an investigation in ways that enable others to repeat it.
PO3. Communicate with other groups to describe the results of an investigation.

Strand 2: History and Nature of Science
3.S2.C1 History of Science as a Human Endeavor: Identify individual and cultural contributions to scientific knowledge.
PO1. Identify how diverse people and/or cultures, past and present, have made important contributions to scientific innovations (e.g., John Muir [naturalist], supports Strand 4; Thomas Edison [inventor], supports Strand 5; Mae Jemison [engineer, physician, astronaut], supports Strand 6; Edmund Halley [scientist], supports Strand 6).
PO2. Describe science-related career opportunities.

PO1. Describe how, in a system (e.g., terrarium, house) with many components, the components usually influence one another.
PO2. Explain why a system may not work if a component is defective or missing.

Strand 3: Science in Personal and Social Perspectives
3.S3.C1 Changes in Environments: Describe the interactions between human populations, natural hazards, and the environment.
PO1. Describe the major factors that could impact a human population (e.g., famine, drought, disease, improved transportation, medical breakthroughs).
PO2. Describe the beneficial and harmful impacts of natural events and human activities on the environment (e.g., forest fires, flooding, pesticides).

PO1. Identify ways that people use tools and techniques to solve problems.
PO2. Describe the development of different technologies (e.g., communication, entertainment, transportation, medicine) in response to resources, needs, and values.

PO3. Design and construct a technological solution to a common problem or need using common materials.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Crosscutting Concepts (CCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practices describe a robust process for how scientists investigate and build models and theories of the natural world or how engineers design and build systems.</td>
<td>Cross boundaries between science disciplines and provide an organizational framework to connect knowledge from various disciplines into a coherent and scientifically based view of the world.</td>
</tr>
<tr>
<td>• Ask questions and define problems</td>
<td>• Structure & Function</td>
</tr>
<tr>
<td>• Develop and use models</td>
<td>• Stability & Change</td>
</tr>
<tr>
<td>• Plan and carry out investigations</td>
<td>• Systems & System Models</td>
</tr>
<tr>
<td>• Analyze and interpret data</td>
<td></td>
</tr>
<tr>
<td>• Use mathematics and computational thinking</td>
<td></td>
</tr>
<tr>
<td>• Construct explanations and design solutions</td>
<td></td>
</tr>
<tr>
<td>• Engage in argument from evidence</td>
<td></td>
</tr>
<tr>
<td>• Obtain, evaluate, and communicate information</td>
<td></td>
</tr>
</tbody>
</table>

Social Justice Standards

Identity 1 – I know and like who I am and can talk about my family and myself and describe our various group identities. (ID.3-5.1)

Diversity 6 – I like knowing people who are like me and different from me, and I treat each person with respect. (DI.3-5-6)

Justice 11 – I try and get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)

Action 16 – I pay attention to how people (including myself) are treated, and I try to treat others how I like to be treated. (AC.3-5.116)

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

Textbook:
- “Earth Materials” materials unit/kit
- Teacher’s manual for “Earth Materials”
- 8 copies of Earth Materials (Science Stories)
- Learning Progressions for K – 5 Science
- FOSS website: www.fossweb.com

Scholastic Leveled Readers

Multicultural Inclusive Strategies

Science Kit Supplemental Resources

Instructional and Assessment Guides

Culturally Responsive Practices ([TUSD SPARKS, SPARKS Strategies](#))

Additional Instructional Resources

The Rock Cycle https://www.learner.org/interactives/rockcycle/rockdiagram/
Pre/Post Unit Assessment:
http://curriculum.tusd1.org/Subject-Areas/Science/Science-Grade-3-Curriculum

Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes

Formative/Performance Assessment – examples:
- Quick writes and drawings in notebooks (e.g., a data table to show how calcite was detected in rocks.)
- Draw and label a diagram of mock rock ingredients with water in vials, using scientific vocabulary.
- Engage in arguments with evidence and reasoning

<table>
<thead>
<tr>
<th>The Rock Cycle</th>
<th>https://www.k5chalkbox.com/what-is-the-rock-cycle.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kids Discover</td>
<td>https://online.kidsdiscover.com/search?query=rocks%20and%20minerals</td>
</tr>
</tbody>
</table>
Reading Focus: Literature, Informational
Writing Focus: Narrative, Informative/Explanatory, Opinion

Unifying Concept: Life Science

Ecosystems

Suggested Duration: 11 weeks

Enduring Understandings:

Ecosystems are areas within which living and nonliving things interact.

There are relationships among various organisms and their environment.

Essential Questions:

What are examples of different ecosystems and their characteristics?
How can interactions between organisms and resources in an ecosystem be determined?
How do climate and weather affect ecosystems?
How do food chains and food webs represent energy flow?
How do organisms in an ecosystem meet their survival needs?
How can changes in an environment be determined as helpful or harmful?

Academic Vocabulary:

- Producers
- Organisms
- Consumers
- Characteristics
- Energy pyramid
- Living
- Decomposers
- Non-living
- Food chain
- Relationships
- Food web
- Interaction
- Ecosystem
- Environment
- Carrying capacity
- Habitat
- Population
- Resources

Standards

Highly-Leveraged Standards

Strand 4: Life Science (HLS- 11%)

3.S4.C1 Characteristics of Organisms: Understand that basic structures in plants and animals serve a function.
PO1. Describe the function of the following plant structures:
 - Roots – absorb nutrients
 - Stems – provide support
 - Leaves – synthesize food
 - Flowers – attract pollinators and produce seeds for reproduction.

PO1. Compare life cycles of various plants (e.g., conifers, flowering plants, ferns).
PO2. Explain how growth, death, and decay are part of the plant life cycle.

3.S4.C3 Organisms and Environments: Understand the relationships among various organisms and their environment.
PO1. Identify the living and nonliving components of an ecosystem.
PO2. Examine an ecosystem to identify microscopic and macroscopic organisms.
PO3. Explain the interrelationships among plants and animals in different environments.

Supporting Standards

Strand 2: History and Nature of Science

3.S2.C2 Nature of Scientific Knowledge: Understand how science is a process for generating knowledge.
PO1. Describe how, in a system (e.g., terrarium, house) with many components, the components usually influence one another.
PO2. Explain why a system may not work if a component is defective or missing.
- Producers – plants
- Consumers – animals
- Decomposers – fungi, insects, bacteria

PO4. Describe how plants and animals cause change in their environment.

PO5. Describe how environmental factors (e.g., soil composition, range of temperature, quantity and quality of light or water) in the ecosystem may affect a member organism’s ability to grow, reproduce, and thrive.

3.S4.C4 Diversity, Adaptation, and Behavior: Identify plant and animal adaptations

PO1. Identify adaptations of plants and animals that allow them to live in specific environments.

PO2. Describe ways that species adapt when introduced into new environments

PO3. Cite examples of how a species’ ability to adapt to changing conditions in the ecosystem led to the extinction of that species.

Constant Standards

Strand 1: Inquiry Process (HLS- 33%)

3.S1.C1 Observations, Questions, and Hypotheses: Observe, ask questions, and make predictions.

PO1. Formulate relevant questions about the properties of objects, organisms, and events of the environment using observations and prior knowledge.

PO2. Predict the results of an investigation based on observed patterns, not random guessing.

PO1. Demonstrate safe behavior and appropriate procedures (e.g., use of instruments, materials, organisms) in all science inquiry.

PO2. Plan a simple investigation (e.g., one plant receives adequate water, one receives too much water, and one receives too little water) based on the formulated questions.

PO3. Conduct simple investigations (e.g., related to plant life cycles, changing the pitch of a sound, properties of rocks) in life, physical, and Earth and space sciences.

PO4. Use metric and U.S. customary units to measure objects.

PO5. Record data in an organized and appropriate format (e.g., t-chart, table, list, written log).

3.S1.C3 Analysis and Conclusions: Organize and analyze data; compare to predictions.

PO1. Organize data using the following methods with appropriate labels:
- Bar graphs
- Pictographs
- Tally charts

PO2. Construct reasonable interpretations of the collected data based on formulated questions.

PO3. Compare the results of the investigation to predictions made prior to the investigation.

PO4. Generate questions for possible future investigations based on the conclusions of the investigation.
PO5. Record questions for further inquiry based on the conclusions of the investigation.

PO1. Communicate investigations and explanations using evidence and appropriate terminology.
PO2. Describe an investigation in ways that enable others to repeat it.
PO3. Communicate with other groups to describe the results of an investigation.

Strand 2: History and Nature of Science
3.S2.C1 History of Science as a Human Endeavor: Identify individual and cultural contributions to scientific knowledge.
PO1. Identify how diverse people and/or cultures, past and present, have made important contributions to scientific innovations (e.g., John Muir [naturalist], supports Strand 4; Thomas Edison [inventor], supports Strand 5; Mae Jemison [engineer, physician, astronaut], supports Strand 6; Edmund Halley [scientist], supports Strand 6).
PO2. Describe science-related career opportunities.

Strand 3: Science in Personal and Social Perspectives
3.S3.C1 Changes in Environments: Describe the interactions between human populations, natural hazards, and the environment.
PO1. Describe the major factors that could impact a human population (e.g., famine, drought, disease, improved transportation, medical breakthroughs.
PO2. Describe the beneficial and harmful impacts of natural events and human activities on the environment (e.g., forest fires, flooding, pesticides).

PO1. Identify ways that people use tools and techniques to solve problems.
PO2. Describe the development of different technologies (e.g., communication, entertainment, transportation, medicine) in response to resources, needs, and values.
PO3. Design and construct a technological solution to a common problem or need using common materials.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Crosscutting Concepts (CCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practices describe a robust process for how scientists investigate and build models and theories of the natural world or how engineers design and build systems.</td>
<td></td>
</tr>
<tr>
<td>• Ask questions and define problems</td>
<td></td>
</tr>
<tr>
<td>• Develop and use models</td>
<td></td>
</tr>
<tr>
<td>• Plan and carry out investigations</td>
<td></td>
</tr>
<tr>
<td>• Analyze and interpret data</td>
<td></td>
</tr>
<tr>
<td>• Use mathematics and computational thinking</td>
<td></td>
</tr>
<tr>
<td>• Construct explanations and design solutions</td>
<td></td>
</tr>
<tr>
<td>• Engage in argument from evidence</td>
<td></td>
</tr>
<tr>
<td>• Obtain, evaluate, and communicate information</td>
<td></td>
</tr>
<tr>
<td>Cross boundaries between science disciplines and provide an organizational framework to connect knowledge from various disciplines into a coherent and scientifically based view of the world.</td>
<td></td>
</tr>
<tr>
<td>• Stability & Change</td>
<td></td>
</tr>
<tr>
<td>• Systems & System Models</td>
<td></td>
</tr>
<tr>
<td>• Energy & Matter</td>
<td></td>
</tr>
</tbody>
</table>

Social Justice Standards
<table>
<thead>
<tr>
<th>Identity 1</th>
<th>I know and like who I am and can talk about my family and myself and describe our various group identities. (ID.3-5.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity 6</td>
<td>I like knowing people who are like me and different from me, and I treat each person with respect. (DI.3.5-6)</td>
</tr>
<tr>
<td>Justice 11</td>
<td>I try and get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)</td>
</tr>
<tr>
<td>Action 16</td>
<td>I pay attention to how people (including myself) are treated, and I try to treat others how I like to be treated. (AC.3-5.16)</td>
</tr>
</tbody>
</table>

Teaching Tolerance Anti-Bias Framework https://www.tolerance.org/frameworks

Adopted Texts and Materials

Textbook:
- “Ecosystems” materials unit/kit
- Teacher’s manual for “Ecosystems”
- 8 copies of Ecosystems (Science Stories)
- [Learning Progressions for K – 5 Science](https://www.tolerance.org/frameworks)
- FOSS website: www.fossweb.com

Recommended Extended Texts:

Video: What is an ecosystem?
http://www.neok12.com/video/Ecosystems/zX7d0b756f7154415351047f.htm

Multicultural Books aligned with Ecosystems Science Resource Kit

 This is the story of Wangari Maathai, winner of the 2004 Nobel Peace Prize and founder of the Green Belt Movement, Wangari came home to find the streams dry, the people malnourished, and the trees gone.

- **The Curious Garden** (2009) *(IL: K–3)*
 Liam discovers a hidden garden and with careful tending spreads color throughout the gray city.

- **The Tree Lady: The True Story of How One Tree-Loving Woman Changed a City Forever** (2013) *(IL: K–3 RL: 4.5)*
 Learn about Katherine Olivia Sessions who brought trees to San Diego and created Balboa Park.

- **Wanda's Roses** (1994) *(IL: K–3)*
 The adults who see Wanda’s rosebush in an empty corner lot do not have the heart to tell her that her bush will never bear roses.

- **Common Ground: The Water, Earth, and Air We Share** (1997) *(Grades 3-7)*
 Imagines a village in which there are too many people consuming shared resources and discusses the challenge of handling our world’s environment safely.

- **Dream Something Big: The Story of the Watts Towers** (2011) *(K-3)*
 In CA, between 1921 and 1955, an Italian immigrant Simon Rodia spent his free time collecting broken bits of pottery, glass, and other scraps and turning them into a work of art.

- **Magic Trash: A Story of Tyree Guyton and His Art** (2011) *(K-3)*
 This engaging picture-book biography delights as an affectionate portrait of a transformative artist and inspires as a call to find and make beauty wherever we are.

- **A River Ran Wild** https://www.youtube.com/watch?v=nRkrwJSVi1o
 Races the ecological evolution of New England’s Nashua River in this story of restoration and renewal. Respected by generations of Native Americans, polluted in the wake of the Industrial Revolution, the river was restored through the combined efforts of modern-day descendants of the Nashua Indians and European settlers. The beautiful illustrations have intricately detailed borders that depict various historical artifacts.

- **Just Like Me, Climbing a Tree: Exploring Trees Around the World** (2015)
If you were climbing a tree, just what might you see? Birds or animals or insects? Would you swing like a monkey? Or pick the ripest fruit straight from the branch? Join award-winning author and illustrator, Durga Yael Bernhard, on a trip around the world to climb its weirdest and most wonderful trees. No matter if you are in Africa, Asia, Europe, or America, there is a grand adventure waiting for you—provided you have a tree to climb in your neighborhood!

<table>
<thead>
<tr>
<th>Scholastic Leveled Readers</th>
<th>Multicultural Inclusive Strategies</th>
<th>Science Kit Supplemental Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructional and Assessment Guides

Culturally Responsive Practices ([TUSD SPARKS, SPARKS Strategies](#))

Pre/Post Unit Assessment
- http://intranet/science/Kit_Asmts.html

Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes

Formative/Performance Assessment
- Assess quick writes and scientific illustrations in notebooks (e.g. different organisms found in different ecosystems.)
- Draw and label a diagram of an ecosystem with living and nonliving components, using scientific vocabulary.
- Compare and contrast different food webs and food chains.
- Engage in arguments with evidence and reasoning (e.g. to support or refute how ecosystems must maintain balanced resources.)
- Using the Internet and other sources, find and organize information to answer a question about ecosystems (e.g., How do humans impact ecosystems?)
- **Lesson 8:** Students determine positive and negative impacts of forest fires on an ecosystem. Create a table or T-Chart to list claim and evidence and reasoning.

Additional Instructional Resources

Population Education https://populationeducation.org/teacher-resources/

Ecosystem video
Reading Focus: Literature, Informational
Writing Focus: Narrative, Informative/Explanatory, Opinion

Unifying Concept: Earth and Space Science
Water

Enduring Understandings:

Water has properties that allow the water cycle to operate within the Earth’s system.

Water is a critical element in all communities.

Essential Questions:
- How does water flow?
- How does changing the slope or quantity of water affect the speed at which water flows downhill?
- What happens to water when it is heated?
- When it is cooled?
- What effect does temperature have on the density of water? On evaporation?
- How does water behave as a liquid and as a solid?
- What is the water cycle?
- What role do plants play in the water cycle?
- How do people get clean water?

Academic Vocabulary:
- Properties
- Liquid Flow
- Density
- Slope
- Environment
- Evaporation
- Ecosystem
- Condensation
- Transpiration
- Precipitation
- Conservation
- Water cycle
- Ground Water
- Expand
- Contract

Highly-Leveraged Standards

Strand 4: Life Science (HLS – 22%)
PO 1. Identify the living and nonliving components of an ecosystem.
PO 5. Describe how environmental factors (e.g., soil composition, range of temperature, quantity and quality of light or water) in the ecosystem may affect a member organism’s ability to grow, reproduce, and thrive.

Supporting Standards

Strand 6: Earth and Space Science

Strand 5: Physical Science
PO 1. Demonstrate that light can be:
- Reflected (with mirrors)
- Refracted (with prisms)
- Absorbed (by dark surfaces)

Constant Standards

Strand 1: Inquiry Process (HLS- 33%)
PO 1. Formulate relevant questions about the properties of objects, organisms, and events of the environment using observations and prior knowledge.
PO 2. Predict the results of an investigation based on observed patterns, not random guessing.

PO 1. Demonstrate safe behavior and appropriate procedures (e.g., use of instruments, materials, organisms) in all science inquiry.
PO2. Plan a simple investigation (e.g., one plant receives adequate water, one receives too much water, and one receives too little water) based on the formulated questions.

PO3. Conduct simple investigations (e.g., related to plant life cycles, changing the pitch of a sound, properties of rocks) in life, physical, and Earth and space sciences.

PO4. Use metric and U.S. customary units to measure objects.

PO5. Record data in an organized and appropriate format (e.g., t-chart, table, list, written log).

3.S1.C3 Analysis and Conclusions: Organize and analyze data; compare to predictions.

PO1. Organize data using the following methods with appropriate labels:
 - Bar graphs
 - Pictographs
 - Tally charts

PO2. Construct reasonable interpretations of the collected data based on formulated questions.

PO3. Compare the results of the investigation to predictions made prior to the investigation.

PO4. Generate questions for possible future investigations based on the conclusions of the investigation.

PO5. Record questions for further inquiry based on the conclusions of the investigation.

PO1. Communicate investigations and explanations using evidence and appropriate terminology.

PO2. Describe an investigation in ways that enable others to repeat it.

PO3. Communicate with other groups to describe the results of an investigation.

Strand 2: History and Nature of Science

3.S2.C1 History of Science as a Human Endeavor: Identify individual and cultural contributions to scientific knowledge.

PO1. Identify how diverse people and/or cultures, past and present, have made important contributions to scientific innovations (e.g., John Muir [naturalist], supports Strand 4; Thomas Edison [inventor], supports Strand 5; Mae Jemison [engineer, physician, astronaut], supports Strand 6; Edmund Halley [scientist], supports Strand 6).

PO2. Describe science-related career opportunities.

PO1. Describe how, in a system (e.g., terrarium, house) with many components, the components usually influence one another.

PO2. Explain why a system may not work if a component is defective or missing.

Strand 3: Science in Personal and Social Perspectives

3.S3.C1 Changes in Environments: Describe the interactions between human populations, natural hazards, and the environment.

PO1. Describe the major factors that could impact a human population (e.g., famine, drought, disease, improved transportation, medical breakthroughs).

PO2. Describe the beneficial and harmful impacts of natural events and human activities on the environment (e.g., forest fires, flooding, pesticides).

PO1. Identify ways that people use tools and techniques to solve problems.

PO2. Describe the development of different technologies (e.g., communication, entertainment, transportation, medicine) in response to resources, needs, and values.

PO3. Design and construct a technological solution to a common problem or need using common materials.

Science and Engineering Practices

Practices describe a robust process for how scientists investigate and build models and theories of the natural world or how engineers design and build systems.

- Ask questions and define problems
- Develop and use models
- Plan and carry out investigations
- Analyze and interpret data
- Use mathematics and computational thinking
- Construct explanations and design solutions
- Engage in argument from evidence
- Obtain, evaluate, and communicate information

Crosscutting Concepts (CCC)

Cross boundaries between science disciplines and provide an organizational framework to connect knowledge from various disciplines into a coherent and scientifically based view of the world.

- Stability & Change
- Systems & System Models
- Energy & Matter

Social Justice Standards

Identity 1 – I know and like who I am and can talk about my family and myself and describe our various group identities. (ID.3-5.1)

Diversity 6 – I like knowing people who are like me and different from me, and I treat each person with respect. (DI.3.5-6)

Justice 11 – I try and get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)

Action 16 – I pay attention to how people (including myself) are treated, and I try to treat others how I like to be treated. (AC.3-5.116)

Teaching Tolerance Anti-Bias Framework

https://www.tolerance.org/frameworks

Adopted Texts and Materials

Textbook:
- FOSS “Water” materials kit
- Teacher Edition for “Water”
- 8 copies of Water (FOSS Science Stories)
- 1 copy of “Our Water Supply” as a resource book
- [Learning Progressions for K – 5 Science](https://learningprogressions.org)
- FOSS website: www.fossweb.com

Multicultural Book aligned with Water Science Resource Kit

- *Our world of water: Children and water around the world (2008) (K-3; Rd Lvl: 4.6)* Wherever we live in this world—whether our country is rich or poor—water is vital to our survival on this planet.

- *A Cool Drink of Water Grades (PK – 2)*

- *One Well: The Story of Water on Earth (2007) (grades 4-6)*

Barbara Kerley teams with the National Geographic society to create a bright, colorful look at how people around the world collect, chill, and drink water.

Seen from space, our planet looks blue. This is because almost 70 percent of Earth’s surface is covered with water. Earth is the only planet with liquid water --- and therefore the only planet that can support life. All water is connected. Every raindrop, lake, underground river and glacier is part of a single global well.

Office of Curriculum, Instruction, and Professional Development

Page 14

Last Edited: 6/13/2018
2018-2019 Science Curriculum Map, Grade 3

<table>
<thead>
<tr>
<th>Scholastic Leveled Readers</th>
<th>Multicultural Inclusive Strategies</th>
<th>Science Kit Supplemental Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source:</td>
<td>Source:</td>
<td>Source:</td>
</tr>
</tbody>
</table>

Instructional and Assessment Guides

Culturally Responsive Practices *(TUSD SPARKS, SPARKS Strategies)*

Pre/Post Unit Assessment:
http://curriculum.tusd1.org/Subject-Areas/Science/Science-Grade-3-Curriculum

- **Concept Map** - pre and post with linking phrases to indicate relationships of concepts and processes

- **Formative/Performance Assessment** – examples:
 - Quick writes and drawings in notebooks (e.g., a data table to show how water moved differently on the various slopes and surfaces.)
 - Draw and label a diagram of the water cycle, using scientific vocabulary.
 - Compare and contrast the processes of evaporation and condensation and/or precipitation and water collection.
 - Engage in arguments with evidence and reasoning (e.g. to support or refute the need for water conservation efforts; to make a claim with evidence & reasoning about water resources in the Tucson area)

Additional Instructional Resources

- **Sources of Water** https://www.youtube.com/watch?v=zbSJfr9IVM
- **The Water Cycle** https://www.youtube.com/watch?v=al-do-HGulk

¹**Highly-Leveraged Standards** are essential for students to learn because they have endurance (knowledge and skills relevant throughout a student’s lifetime); leverage (knowledge and skills used across multiple content areas); and essentiality (knowledge and skills necessary for success in future courses or grade levels).*

²**Supporting Standards** are emphasized during the quarter as they are integral to achieve mastery of the Highly Leveraged Standards. Mastery of these standards are used measured using classroom assessments.

³**Constant Standards** are repeatedly addressed to reinforce grade-level mastery.
Reading Focus: Literature, Informational
Writing Focus: Narrative, Informative/Explanatory, Opinion

Unifying Concept: Physical Science
Sound and Light (mini-kit)

Suggested Duration: 2-3 weeks

<table>
<thead>
<tr>
<th>Enduring Understandings:</th>
<th>Essential Questions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound and light have identifiable properties that can be demonstrated.</td>
<td>How is sound made?</td>
</tr>
<tr>
<td></td>
<td>What are the properties of sound?</td>
</tr>
<tr>
<td></td>
<td>What are the properties of light?</td>
</tr>
</tbody>
</table>

Essential Questions:
- How is sound made?
- What are the properties of sound?
- What are the properties of light?

Academic Vocabulary:
- Properties
- Vibrate
- Reflected
- Pitch
- Refracted
- Energy
- Absorbed
- High pitch
- Transparent
- Low pitch
- Translucent
- Sound wave
- Opaque
- Prisms

Standards

Highly-Leveraged Standards

Strand 5: Physical Science (HLS-11%)

3.S5.C3 Energy and Magnetism: Investigate different forms of energy

PO1. Demonstrate that light can be:
- Reflected (with mirrors)
- Refracted (with prisms)
- Absorbed (by dark surfaces)

PO2. Describe how light behaves on striking objects that are:
- Transparent (clear plastic)
- Translucent (waxed paper)
- Opaque (cardboard)

PO3. Demonstrate that vibrating objects produce sound.

PO4. Demonstrate that the pitch of a sound depends on the rate of the vibration (e.g., a long rubber band has a lower pitch than a short rubber band).

Supporting Standards

Strand 3: Science in Personal and Social Perspectives

3.S3.C2 Science and Technology in Society:

PO1. Identify ways that people use tools and techniques to solve problems.

Constant Standards

Strand 1: Inquiry Process (HLS- 33%)

3.S1.C1 Observations, Questions, and Hypotheses: Observe, ask questions, and make predictions.

PO1. Formulate relevant questions about the properties of objects, organisms, and events of the environment using observations and prior knowledge.

PO2. Predict the results of an investigation based on observed patterns, not random guessing.

PO1. Demonstrate safe behavior and appropriate procedures (e.g., use of instruments, materials, organisms) in all science inquiry.

PO2. Plan a simple investigation (e.g., one plant receives adequate water, one receives too much water, and one receives too little water) based on the formulated questions.

PO3. Conduct simple investigations (e.g., related to plant life cycles, changing the pitch of a sound, properties of rocks) in life, physical, and Earth and space sciences.

PO4. Use metric and U.S. customary units to measure objects.

PO5. Record data in an organized and appropriate format (e.g., t-chart, table, list, written log).

3.S1.C3 Analysis and Conclusions: Organize and analyze data; compare to predictions.

PO1. Organize data using the following methods with appropriate labels:
 - Bar graphs
 - Pictographs
 - Tally charts

PO2. Construct reasonable interpretations of the collected data based on formulated questions.

PO3. Compare the results of the investigation to predictions made prior to the investigation.

PO4. Generate questions for possible future investigations based on the conclusions of the investigation.

PO5. Record questions for further inquiry based on the conclusions of the investigation.

PO1. Communicate investigations and explanations using evidence and appropriate terminology.

PO2. Describe an investigation in ways that enable others to repeat it.

PO3. Communicate with other groups to describe the results of an investigation.

Strand 2: History and Nature of Science

3.S2.C1 History of Science as a Human Endeavor: Identify individual and cultural contributions to scientific knowledge.

PO1. Identify how diverse people and/or cultures, past and present, have made important contributions to scientific innovations (e.g., John Muir [naturalist], supports Strand 4; Thomas Edison [inventor], supports Strand 5; Mae Jemison [engineer, physician, astronaut], supports Strand 6; Edmund Halley [scientist], supports Strand 6).

PO2. Describe science-related career opportunities.

PO1. Describe how, in a system (e.g., terrarium, house) with many components, the components usually influence one another.

PO2. Explain why a system may not work if a component is defective or missing.

Strand 3: Science in Personal and Social Perspectives

3.S3.C1 Changes in Environments: Describe the interactions between human populations, natural hazards, and the environment.

PO1. Describe the major factors that could impact a human population (e.g., famine, drought, disease, improved transportation, medical breakthroughs).

PO2. Describe the beneficial and harmful impacts of natural events and human activities on the environment (e.g., forest fires, flooding, pesticides).
3.53.C2 Science and Technology in Society

Understand the impact of technology.

PO2. Describe the development of different technologies (e.g., communication, entertainment, transportation, medicine) in response to resources, needs, and values.

PO3. Design and construct a technological solution to a common problem or need using common materials.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Crosscutting Concepts (CCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practices describe a robust process for how scientists investigate and build models and theories of the natural world or how engineers design and build systems.</td>
<td>Cross boundaries between science disciplines and provide an organizational framework to connect knowledge from various disciplines into a coherent and scientifically based view of the world.</td>
</tr>
<tr>
<td>- Ask questions and define problems</td>
<td>- Patterns</td>
</tr>
<tr>
<td>- Develop and use models</td>
<td>- Cause & Effect</td>
</tr>
<tr>
<td>- Plan and carry out investigations</td>
<td>- Energy & Matter</td>
</tr>
<tr>
<td>- Analyze and interpret data</td>
<td></td>
</tr>
<tr>
<td>- Use mathematics and computational thinking</td>
<td></td>
</tr>
<tr>
<td>- Construct explanations and design solutions</td>
<td></td>
</tr>
<tr>
<td>- Engage in argument from evidence</td>
<td></td>
</tr>
<tr>
<td>- Obtain, evaluate, and communicate information</td>
<td></td>
</tr>
</tbody>
</table>

Social Justice Standards

Identity 1 – I know and like who I am and can talk about my family and myself and describe our various group identities. (ID.3-5.1)

Diversity 6 – I like knowing people who are like me and different from me, and I treat each person with respect. (DI.3.5-6)

Justice 11 – I try and get to know people as individuals because I know it is unfair to think all people in a shared identity group are the same. (JU.3-5.11)

Action 16 – I pay attention to how people (including myself) are treated, and I try to treat others how I like to be treated. (AC.3-5.116)

Teaching Tolerance Anti-Bias Framework

https://www.tolerance.org/frameworks

Adopted Texts and Materials

- **Textbook:**
 - “Sound and Light” materials unit/kit
 - Teacher’s manual for “Sound and Light”
 - 8 copies of Sound and Light (Science Stories)
 - [Learning Progressions for K – 5 Science](#)
 - FOSS website: www.fossweb.com

Scholastic Leveled Readers

- [Scholastic Leveled Readers](#)

Multicultural Inclusive Strategies

- [Multicultural Inclusive Strategies](#)

Science Kit Supplemental Resources
Instructional and Assessment Guides

<table>
<thead>
<tr>
<th>Culturally Responsive Practices (TUSD SPARKS, SPARKS Strategies)</th>
<th>Pre/Post Unit Assessment: http://curriculum.tusd1.org/Subject-Areas/Science/Science-Grade-3-Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Map - pre and post with linking phrases to indicate relationships of concepts and processes</td>
<td>Formative/Performance Assessment:</td>
</tr>
<tr>
<td>Quick writes and drawings in notebooks (e.g. details of light moves) Use scientific vocabulary and explain the different paths light takes. Compare and contrast reflection and refraction of light. Compare and contrast high and low pitch sounds. Design and create a musical instrument and report the results. Teach students to annotate drawings to visually represent their thinking. Annotated drawings can be used to demonstrate prior knowledge and then new knowledge gained from the unit. Choose one of the three main writing formats (narrative, opinion, informational) and use insects as the theme. Students may choose their favorite format to demonstrate their knowledge of how sound is made. Human Scatterplot – a formative assessment strategy to engage students in thinking about their learning as well as ideas of classmates.</td>
<td></td>
</tr>
</tbody>
</table>

Additional Instructional Resources

| --- |

¹Highly-Leveraged Standards are essential for students to learn because they have endurance (knowledge and skills relevant throughout a student’s lifetime); leverage (knowledge and skills used across multiple content areas); and essentiality (knowledge and skills necessary for success in future courses or grade levels).*

²Supporting Standards are emphasized during the quarter as they are integral to achieve mastery of the Highly Leveraged Standards. Mastery of these standards are used measured using classroom assessments.

³Constant Standards are repeatedly addressed to reinforce grade-level mastery.

This definition for Highly-Leveraged Standards was adapted from the “power standard” definition on the website of the Millis Public Schools, K-12, Massachusetts, USA, 2016.